TECNOLOGIAS EMERGENTES: ÚTEIS PARA ESTABILIDADE DE PREBIÓTICOS?

Autores

  • Nathalia Gomes Ribeiro
  • Renata Santana Lorenzo Raices
  • Adriano Gomes da Cruz

Resumo

Nos últimos anos, a busca por alimentos mais saudáveis tem aumentado. A crescente demanda por alimentos funcionais, como os produtos adicionados de prebióticos e probióticos, fez com que a indústria buscasse meios mais eficazes para produzi-los. Com isso, novas e antigas tecnologias vêm sendo desenvolvidas, estudadas e readaptadas para esta finalidade. Deste modo, o aquecimento ôhmico, plasma frio, alta pressão e ultrassom são exemplos de tecnologias emergentes que tem mostrado ótimos resultados quando comparados as tecnologias convencionais, como a pasteurização, no sentido de manter a segurança do alimento, aumentar a qualidade sensorial do produto e também o conteúdo de nutrientes. Diversos grupos de pesquisa têm estudado o uso dessas tecnologias a alimentos com adição de prebióticos. O presente trabalho tem como objetivo, mostrar os estudos com as tecnologias emergentes e seus efeitos sobre os atributos de qualidade sensorial e nutricional em diversos produtos alimentícios, especialmente sobre a estabilidade dos prebióticos adicionados a esses alimentos.

Referências

Alaei, F., Hojjatoleslamy, M., Dehkordi, S. M. H. (2018). The effect of inulin as a fat substitute on the physicochemical and sensory properties of chicken sausages. Food Science and Nutrition, 6, 512–519.

Almeida, F. D. L., Cavalcante, R. S., Cullen, P. J., Frias, J. M., Bourke, P., Fernandes, F. A. N., Rodrigues, S. (2015). Effects of atmospheric cold plasma and ozone on

prebiotic orange juice. Innovative Food Science and Emerging Technologies, 32, 127–135.

Almeida, F. D. L., Gomes, W. F., Cavalcante, R. S., Tiwari, B. K., Cullen, P. J., Frias, J. M., Bourke, P., Fernandes, F. A. N., Rodrigues, S. (2017). Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice. Food Research International, 102, 282–290.

Al-sheraji, S. H., Ismail, A., Manap, M. Y., Mustafa, S., Yusof, R. M., Hassan, F. A. (2013). Prebiotics as functional foods: A review, Journal of Functional Foods, 5, 1542–1553.

Alvarez-Sabatel, S., De Marañón, I. M., Arboleya, J. C. (2015). Impact of high pressure homogenisation (HPH) on inulin gelling properties, stability and development during storage. Food Hydrocolloids, 44, 333–344.

Ashwini, A., Ramya, H. N., Ramkumar, C., Reddy, K. R., Kulkarni, R. V., Abinaya, V., Naveen, S., Raghu, A. V. (2019). Reactive mechanism and the applications of bioactive prebiotics for human health: Review. Journal of Microbiological Methods, 159, 128–137.

Balthazar, C. F., Silva, H. L. A., Vieira, A. H., Neto, R. P. C., Cappato, L. P., Coimbra, P. T., Moraes, J., Andrade, M. M., Calado, V. M. A., Granato, D., Freitas, M. Q., Tavares, M. I. B., Raices, R. S. L., Silva, M. C., Cruz, A. G. (2017). Assessing the effects of different prebiotic dietary oligosaccharides in sheep milk ice cream. Food Research International, 91, 38–46.

Birch, C. S. & Bonwick, G. A. (2019). Ensuring the future of functional foods. International Journal of Food Science and Technology, 54, 1467–1485.

Brasil. (2018). Anvisa Esclarece - Alimentos. 277- Alimentos Funcinais e Novos Alimentos. Disponível em: http://portal.anvisa.gov.br/anvisa-esclarece

Cappato, L. P., Ferreira, M. V. S., Guimaraes, J. T., Portela, J. B., Costa, A. L. R., Freitas, M. Q., Cunha, R. L., Oliveira, C. A. F., Mercali, G. D., Marzack, L. D. F., Cruz, A. G. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science and Technology, 62, 104–112.

Carlson, J. L., Erickson, J. M., Lloyd, B. B., Slavin, J. L. (2018). Health Effects and Sources of Prebiotic Dietary Fiber. Current Developments in Nutrition, 2, 1–8.

Da Silva, Á. G. F., Bessa, M. M., Da Silva, J. R. (2017). Elaboração e caracterização físico-química e sensorial de iogurte light prebiótico adoçado com mel. Revista do Instituto de Laticínios Cândido Tostes, 72, 74–84.

Farias, D. de P., De Araújo, F. F., Neri-Numa, I. A., Pastore, G. M. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science and Technology, 93, 23–35.

Gallo, M., Ferrara, L., Naviglio, D. (2018). Application of ultrasound in food science and technology: A perspective. Foods, 7, 1–18.

Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., Reid, G. (2017). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14, 491–502.

Gomes, W. F., Tiwari, B. K., Rodriguez, Ó., De Brito, E. S., Fernandes, F. A. N., Rodrigues, S. (2017). Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chemistry, 218, 261–268.

Guimarães, J. T., Balthazar, C. F., Silva, R., Rocha, R. S., Graça, J. S., Esmerino, E. A., Silva, M. C., Sant'Ana, A. S., Duarte, M. C. K. H., Freitas, M. Q., Cruz, A. G. (2020). Impact of probiotics and prebiotics on food texture. Current Opinion in Food Science, 33, 38–44.

Guimarães, J. T., Silva, E. K., Ranadheera, C. S., Moraes, J., Raices, R. S. L., Silva, M. C., Ferreira, M. S., Freitas, M. Q., Meireles, M. A. A., Cruz, A. G. (2019). Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage. Ultrasonics Sonochemistry, 55, 157–164.

Hernández-Hernández, H. M., Moreno-Vilet, L., Villanueva-Rodríguez, S. J. (2019). Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innovative Food Science and Emerging Technologies, 58, 1-16.

Jermann, C., Koutchma, T., Margas, E., Leadley, C., Ros-Polski, V. (2015). Mapping trends in novel and emerging food processing technologies around the world. Innovative Food Science and Emerging Technologies, 31, 14–27.

Keenan, D. F., Brunton, N., Butler, F., Wouters, R., Gormley, R. (2011). Evaluation of thermal and high hydrostatic pressure processed apple purees enriched with prebiotic inclusions. Innovative Food Science and Emerging Technologies, 12, 261–268.

Knorr, D. & Watzke, H. (2019). Food processing at a crossroad. Frontiers in Nutrition, 6, 1–8.

Lee, S. H., Choi, W., Jun, S. (2016). Conventional and Emerging Combination

Technologies for Food Processing. Food Engineering Reviews, 8, 414–434.

Macedo, L. L., Vimercati, W. C., Araújo, C. da S. (2020). Fruto-oligossacarídeos: aspectos nutricionais, tecnológicos e sensoriais. Brazilian Journal of Food Technology, 23, 1–9.

Mano, M. C. R., Neri-Numa, I. A., Da Silva, J. B., Paulino, B. N., Pessoa, M. G., Pastore, G. M. (2018). Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Applied Microbiology and Biotechnology, 102, 17–37.

Misra, N. N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inácio, R. S., Saraiva, J. A., Barba, F. J. (2017). Landmarks in the historical development of twenty first century food processing technologies. Food Research International, 97, 318–339.

Moreno-Vilet, L., Hernández-Hernández, H. M., Villanueva-Rodríguez, S. J. (2018). Current status of emerging food processing technologies in Latin America: Novel thermal processing. Innovative Food Science and Emerging Technologies, 50, 196–206.

Nunes, L. & Tavares, G. M. (2019). Thermal treatments and emerging technologies: Impacts on the structure and techno-functional properties of milk proteins. Trends in Food Science and Technology, 90, 88–99.

Pereira, P. C. (2014). Milk nutritional composition and its role in human health. Nutrition, 30, 619–627.

Priyanka, Minz, P., Subramani, P. (2018). Study of heating pattern during heat treatment of milk by ohmic heating. Journal of Pharmacognosy and Phytochemistry, 7, 3033–3036.

Rueangwatcharin, U. & Wichienchot, S. (2015). Development of functional canned and

pouched tuna products added inulin for commercial production. Journal of Food Science and Technology, 52, 5093–5101.

Sangwan, V., Tomar, S. K., Singh, R. R. B., Singh, A. K., Ali, B. (2011). Galactooligosaccharides: Novel Components of Designer Foods. Journal of Food Science, 76, 103–111.

Silva, E. K., Arruda, H. S., Pastore, G. M., Meireles, M. A. A., Saldaña, M. D. A. (2020). Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrasonics Sonochemistry, 63, 1–8.

Singh, S. P., Jadaun, J. S., Narnoliya, L. K., Pandey, A. (2017). Prebiotic Oligosaccharides: Special Focus on Fructooligosaccharides, Its Biosynthesis and Bioactivity. Applied Biochemistry and Biotechnology, 183, 613–635.

Singla, V. & Chakkaravarthi, S. (2017). Applications of prebiotics in food industry: A review. Food Science and Technology International, 23, 649–667.

Soukoulis, C., Rontogianni, E., Tzia, C. (2010). Contribution of thermal, rheological and physical measurements to the determination of sensorially perceived quality of ice cream containing bulk sweeteners. Journal of Food Engineering, 100, 634–641.

Tunick, M. H. & Van Hekken, D. L. (2015). Dairy Products and Health: Recent Insights. Journal of Agricultural and Food Chemistry, 63, 9381–9388.

Volpini-Rapina, L. F., Sokei, F. R., Conti-Silva, A. C. (2012). Sensory profile and preference mapping of orange cakes with addition of prebiotics inulin and oligofructose. LWT - Food Science and Technology, 48, 37–42.

Whisner, C. M. & Castillo, L. F. (2018). Prebiotics, Bone and Mineral Metabolism. Calcified Tissue International, 102, 443–479.

Yan, Y. L., Hu, Y., Gänzle, M. G. (2018). Prebiotics, FODMAPs and dietary fiber — conflicting concepts in development of functional food products?. Current Opinion in Food Science, 20, 30–37.

Downloads

Publicado

2020-09-08

Edição

Seção

Tecnologia de Alimentos