USO DA CITOMETRIA DE FLUXO COMO UMA METODOLOGIA EMERGENTE PARA AVALIAR A VIABILIDADE CELULAR PROBIÓTICA

Autores

  • Cássia Pereira Barros
  • Roberto Pessanha da Silva Pires
  • Mônica Queiroz de Freitas
  • Adriano Gomes da Cruz

Resumo

A quantificação bacteriana em uma formulação probiótica de forma precisa é imprescindível para garantir que o produto atingiu a dose mínima de células recomendada, cumprindo assim, os padrões regulamentares e a citação no rótulo. Métodos tradicionais de contagem em placas não enumeram com exatidão todos os probióticos disponíveis, apenas a população bacteriana capaz de se replicar sob em meios de cultura em circunstâncias específicas. Portanto, não contabilizam as bactérias que sob condições ambientais estressantes tornam-se não cultiváveis, embora se mantenham metabolicamente ativas e possam retornar a capacidade de se replicar quando as condições se tornarem favoráveis novamente. Por outro lado, metodologias independentes de cultura, como a citometria de fluxo, possui uma definição mais abrangente e confiável da viabilidade bacteriana por incluir as bactérias viáveis mas não cultiváveis (VNC), discriminando subpolulações celulares vivas, danificadas e mortas com precisão e rapidez, facilitando assim, a rotina de laboratórios. Nesta revisão são abordados aspectos gerais da citometria de fluxo, bem como as principais vantagens da utilização para avaliação detalhada da viabilidade e funções fisiológicas celulares quando comparado às técnicas tradicionais de cultura.

Referências

Aebisher, D., Bartusik, D. & Tabarkiewicz, J. (2017). Laser flow cytometry as a tool for the advancement of clinical medicine. Biomedicine & Pharmacotherapy, 85, 434-443.

Ambros, S., Mayer, R., Schumann, B. & Kulozik, U. (2018). Microwave-freeze drying of lactic acid bacteria: Influence of process parameters on drying behavior and viability. Innovative Food Science and Emerging Technologies, 48, 90-98.

Ananta, E., Heinz, V. & Knorr, D. (2004) Assessment of high pressure induced damage on Lactobacillus rhamnosus GG by flow cytometry. Food Microbiology, 21, 567–577.

Anekella, K. & Orsat, V. (2013). Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT - Food Science and Technology, 50, 17-24.

Anvarian, A.H.P., Smith, M.P. & Overton, T.W. (2018). Use of flow cytometry and total viable count to determine the effects of orange juice composition on the physiology of Escherichia coli. Food Science & Nutrition. 6, 1817-1825.

Arku, B., Fanning, S. & Jordan, K. (2011). Flow cytometry to assess biochemical pathways in heat-stressed Cronobacter spp. (formerly Enterobacter sakazakii). Journal of Applied Microbiology, 111, 616-624.

Aureli, P., Fiore, A., Scalfaro, C., Casale, M. & Franciosa, G. 2010. National survey outcomes on commercial probiotic food supplements in Italy. International Journal of Food Microbiology, 137, 265-273.

Ayari, S., Dussault, D., Hayouni, E.A., Hamdi, M. & Lacroix, M. (2013). Radiation tolerance of Bacillus cereus pre-treated with carvacrol alone or in combination with nisin after exposure to single and multiple sub-lethal radiation treatment. Food Control, 32, 693–701.

Barros, C.P., Guimarães, J.T., Esmerino, E.A., Duarte, M.C.K.H., Silva, M.C., Silva, R., Ferreira, B.M., Sant’Ana, A.S., Freitas, M.Q., Cruz, A.G. (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science. 32, 1-8.

Begum, A.A., Jakaria, D.M., Anisuzzaman, S., Islam, M. & Mahmud, S.A. (2015) Market assessment and product evaluation of probiotic containing dietary supplements available in Bangladesh market. Journal of Pharmacology, 763796, 1-5.

Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Lorente, C. & Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition & Metabolism, 61, 160-174.

Betoret, N., Puente, L., Díaz, M. J., Pagan, M. J., García, M. J., Gras, M. L., Martínez-Monzó, J. & Fito, P. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56, 273-277.

Booyens, J. & Thantsha, M.S. (2014). Fourier transform infra-red spectroscopy and flow cytometric assessment of the antibacterial mechanism of action of aqueous extract of garlic (Allium sativum) against selected probiotic Bifidobacterium strains. BMC Complementary and Alternative Medicine, 14, 289.

Bordoni, A., Amaretti, A., Leonardi, A., Boschetti, E., Danesi, F., Matteuzzi, D., Roncaglia, L., Raimondi, S. & Rossi, M. (2013). Cholesterol-lowering probiotics: In vitro selection and in vivo testing of bifidobacteria. Applied Microbiology and Biotechnology, 97, 8273-8281.

Bunthof, C.J. & Abee, T. (2002). Development of a Flow Cytometric Method To Analyze Subpopulations of Bacteria in Probiotic Products and Dairy Starters. Applied and Environmental Microbiology, 68, 2934–2942.

Bunthof, C.J., Bloemen, K., Breeuwer, P., Rombouts, F.M. & Abee, T. (2001). Flow Cytometric Assessment of Viability of Lactic Acid Bacteria. Applied and Environmental Microbiology, 67, 2326–2335.

Çaglar, E., Sandalli, N., Kuscu, O.O. & Kargul, B. (2011). The buffering capacity of probiotic yogurt. Acta Stomatologica Croatica, 45, 41-45.

Chen, S., Ferguson, L.R., Shu, Q. & Garg, S. (2011). The application of flow cytometry to the characterisation of a probiotic strain Lactobacillus reuteri DPC16 and the evaluation of sugar preservatives for its lyophilization. LWT - Food Science and Technology, 44, 1873-1879.

Chiang, S. & Pan, T. (2012). Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Applied Microbiology and Biotechnology, 93, 903-916.

Cinque, B., La Torre, C., Lombardi, F., Palumbo, P., Van der Rest, M. & Cifone, M.G. (2016). Production conditions affect the in vitro anti-tumoral effects of a high concentration multistrain probiotic preparation, PLoS ONE, 11, 1-19.

Colombo, M., Todorov, S.D., Eller, M. & Nero, L.A. (2018). The potential use of probiotic and beneficial bacteria in the Brazilian dairy industry. Journal of Dairy Research, 85, 487–496.

Collado M.C., Vinderola, G., Salminen, S. (2019). Postbiotics: facts and open questions. A position paper on the need for a consensus definition. Beneficies Microbes, 10, 711-719.

Dash, G., Raman, R. P., Prasad. K.P., Makesh, M., Pradeep, M.A. & Sen, S. (2015). Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish & Shellfish Immunology, 43, 167-174.

Davis, C. (2014). Enumeration of probiotic strains: Review of culture-dependent and alternative techniques to quantify viable bacteria. Journal of Microbiological Methods, 103, 9-17.

de Almada, C.N., Almada, C.N., Martinez, R.C. & Sant’Ana, A.S. (2015). Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Applied Microbiology and Biotechnology, 99, 4175-4199.

de Almada, C.N., Almada, C.N., Martinez, R.C.R. & Sant’ana, A.S. (2016). Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Science & Technology, 58, 96-114.

Diaz, M., Herrero, M., Garcia, A. & Quiros, C. (2010). Application of flow cytometry to industrial bioprocesses. Biochemical Engineering Journal, 48, 385–407.

Doherty, S. B., Wang, L., Ross, R. P., Stanton, C., Fitzgerald, G.F. & Brodkorb, A. (2010). Use of viability staining in combination with flow cytometry for rapid viability assessment of Lactobacillus rhamnosus GG in complex protein matrices. Journal of Microbiological Methods, 82, 301-310.

Doolan, I. A., Nongonierma, A. B., Kilcawley, K.N. & Wilkinson, M.G. (2014). Partitioning of starter bacteria and added exogenous enzyme activities between curd and whey during Cheddar cheese manufacture. International Dairy Journal, 34, 159-166.

Domingos, J.J.S. (2017). Review of the role of probiotics in gastrointestinal diseases in adults. Gastroenterología y Hepatología, 40, 417-429.

Drago, L., Rodighiero, V., Celeste, T., Rovetto, L. & De Vecchi, E. (2010). Microbiological evaluation of commercial probiotic products available in the USA in 2009. Journal of Chemotherapy, 22, 373-377.

du Toit, E., Vesterlund, S., Gueimonde, M. & Salminen, S. (2013). Assessment of the effect of stresstolerance acquisition on some basic characteristics of specific probiotics. International Journal of Food Microbiology, 165, 51-56.

Egli, T. & Kotzsch, S. (2015). Flow cytometry for rapid microbiological analysis of drinking Water: From science-an unfinished story. In M. G. Wilkinson (Ed.). Flow cytometry in Microbiology: Technology and applications (pp. 175–216). Norfolk, UK: Caister Academic Press.

Ferrario, M. & Guerrero, S. (2017). Impact of a combined processing technology involving ultrasound and pulsed light on structural and physiological changes of Saccharomyces cerevisiae KE 162 in apple juice. Food Microbiology, 65, 83-94.

Fontana, L., Bermudez-Brito, M., Plaza-Diaz, J., Munoz-Quezada, S. & Gil, A. (2013). Sources, isolation, characterisation and evaluation of probiotics. British Journal of Nutrition, 109, 35-50.

Fredua-Agyeman, M., Parab, S. & Gaisford, S. (2016). Evaluation of commercial probiotic products. British Journal of Pharmacology, 1, 84-89.

Gao, Y., Yu, H-J. & Wen, B. (2018). The use of fluorescent techniques in combination with flow cytometry for fast counting of Bifidobacterium longum ATCC BAA-2753 in BIFICO capsule. Food Science and Biotechnology, 2, 1405–1410.

Gandhi, A. & Sha, N.P. (2015). Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry. Food Microbiology, 49, 197-202.

Herrero, M. & Diaz, M. (2015). Application of flow cytometry to environmental biotechnology. In M. G. Wilkinson (Ed.). Flow cytometry in Microbiology: Technology and applications (pp. 59–75). Norfolk, UK: Caister Academic Press.

Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merestein, D.J., Pot, D.B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C. & Sanders, M.E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514.

Kerry, R.G., Patra, J.K., Gouda, S., Park, Y., Shin, H-S. & Das, G. (2018) Benefaction of probiotics for human health: a review. Journal of Food and Drug Analysis, 26, 927–939.

Krasaekoopt, W. & Watcharapoka, S. (2014). Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT - Food Science and Technology, 57, 761-766.

Kristensen, N.B., Bryrup, T., Allin, K.H., Nielsen, T., Hansen, T.H. & Pedersen, O. (2016). Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Medicine, 8, p. 52.

Lahtinen, S.J., Ahokoski, H., Reinikainen, J.P., Gueimonde, M., Nurmi, J., Ouwenhand, A.C. & Salminen, S.J. (2008). Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Letters in Applied Microbiology. 46, 693–698.

Léonard, L., Chibane, L.B., Bouhedda, B.O., Degraeve, P. & Oulahal, N. (2016). Recent Advances on Multi-Parameter Flow Cytometry to Characterize Antimicrobial Treatments. Frontiers in Microbiology, 7, 1225.

Longin, C., Petitgonnet, C., Guilloux-Benatier, M., Rousseaux, S., & Alexandre, H. (2017). Application of flow cytometry to wine microorganisms. Food Microbiology, 62, 221–231.

Markets and Markets: Probiotics market by application (functional food & beverages (dairy, non-dairy beverages, baked goods, meat, cereal), dietary supplements, animal feed), source (bacteria, yeast), form (dry, liquid), end user (human, animal), and Region- Global Forecast to 2023. (2017). Disponível em: https://www.marketsandmarkets.com/Market-Reports/probiotic-market-advanced-technologies-and-global-market-69.

Marsh, A.J., Hill, C., Ross, R.P. & Cotter, P.D. (2014). Fermented beverages with health-promoting potential: past and future perspectives. Trends in Food Science and Technology, 38, 113-124.

Michelutti, L., Bulfoni, M. & Nencioni, E. (2020). A novel pharmaceutical approach for the analytical validation of probiotic bacterial count by flow cytometry. Journal of Microbiological Methods. 170, 105834.

Moineau-Jean, A., Champagne, C.P., Roy, D., Raymond, Y. & LaPointe, G. (2019). Effect of Greek-style yoghurt manufacturing processes on starter and probiotic bacteria populations during storage. International Dairy Journal. 93, 35-44.

Mortazavian, A.M., Mohammadi, R. & Sohrabvandi, S. (2012). Delivery of probiotic microorganisms into gastrointestinal tract by food products, in Brzozowski, T. (Ed.), New Advances in the Basic and Clinical Gastroenterology, InTech, Croatia.

Olszewska, M.A., Kocot, A.M., Nynca, A. & Łaniewska-Trokenheima, Ł. (2016). Utilization of physiological and taxonomic fluorescent probes to study Lactobacilli cells and response to pH challenge. Microbiological Research, 192, 239-246.

Overton, T. W. (2015). Flow cytometry of yeasts and other fungi. In M. G. Wilkinson (Ed.). Flow cytometry in Microbiology: Technology and applications (pp. 119–158). Norfolk, UK: Caister Academic Press.

Ozer, B.H. & Kirmaci, H.A. (2010). Functional milks and dairy beverages. International Journal of Dairy Technology, 63, 1-15.

Pimentel, T.C., Garcia, S. & Prudencio, S.H. (2017). Produtos lácteos funcionais. In Produção, Processamento e Fiscalização de Leite e Derivados, Vol. 1, p. 205–226 (Eds. LA Nero, AG Cruz & LS Bersot). Atheneu: São Paulo, SP, Brasil.

Quigley, E.M.M. (2013). Gut bacteria in health and disease. Gastroenterology & Hepatology, 9, 560-569.

Piqué, N., Berlanga, M. & Miñana-Galbis, D. (2019). Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. International Journal of Molecular Sciences, 20, 2534.

Rault, A., Béal, C., Ghorbal, S., Ogier, J-C. & Bouix, M. (2007). Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiology, 55, 35-43.

Rault, A., Bouix, M. & Béal, C. (2008). Dynamic analysis of Lactobacillus delbrueckii subsp. bulgaricus CFL1 physiological characteristics during fermentation. Applied Microbiology and Biotechnology, 81, 559–570.

Raymond, Y. & Champagne, C.P. (2015). The use of flow cytometry to accurately ascertain total and viable counts of Lactobacillus rhamnosus in chocolate. Food Microbiology, 46, 176-183

Rodrigues, V.C.C., Silva, L.G.S., Simabuco, F.M., Venema, K. & Antunes, A.E.C. (2019). Survival, metabolic status and cellular morphology of probiotics in dairy products and dietary supplement after simulated digestion. Journal of Functional Foods, 55, 126-134.

Salar-Behzadi, S., Wu, S., Toegel, S., Hofrichter, M., Altenburger, I., Unger, F. M., Wirth, M. & Viernstein, H. (2013). Impact of heat treatment and spray drying on cellular properties and culturability of Bifidobacterium bifidum BB-12. Food Research International, 54, 93-101.

Sarkar, S. (2013). Microbiological Considerations for Probiotic Supplemented Foods. International Journal of Microbiology & Advanced lmmunology, 1, 1-7.

Silva, T.L., Piekova, L., Mileu, J. & Roseiro, J.C. (2009). A comparative study using the dual staining flow cytometric protocol applied to Lactobacillus rhamnosus and Bacillus licheniformis batch cultures. Enzyme and Microbial Technology, 45, 134-138.

Soccol, C.R.; Vandenberghe, L.P.; Spier, M.R., Medeiros, A.B.P., Yamaguishi, C.T., Lindner, J.D., Pandey, A. & Soccol, V.T. (2010). The potential of probiotics: a review. Food Technology Biotechnology, 48, 413-434.

Sousa, S., Gomes, A.M., Pintado, M.M., Silva, J.P., Costa, P., Amaral, M.H., Duarte, A.C., Rodrigues, D., Rocha-Santos, T.A.P. & Freitas, A.C. (2015). Characterization of freezing effect upon stability of, probiotic loaded, calcium-alginate microparticles. Food and Bioproducts Processing, 93, 90-97.

Wilkinson, M.G. (2016). Flow cytometry in food Microbiology: Challenges, opportunities and progress to date. (2016). Tecnicas de Laboratorio, 417, 722-728.

Wilkinson, M.G. (2018). Flow cytometry as a potential method of measuring bacterial viability in probiotic products: A review. Trends in Food Science & Technology, 78, 1-10.

Yanachkina, P., McCarthy, C., Guinee, T. & Wilkinson, M. (2016). Effect of varying the salt and fat content in Cheddar cheese on aspects of the performance of a commercial starter culture preparation during ripening. International Journal of Food Microbiology, 224, 7-15.

Ziarno, M. & Zareba, D. (2015). Effects of milk components and food additives on survival of three bifidobacteria strains in fermented milk under simulated gastrointestinal tract conditions. Microbial Ecology in Health and Disease, 26, 27812.

Downloads

Publicado

2020-08-01

Edição

Seção

Microbiologia de Alimentos