PARAPROBIÓTICOS COMO POTENCIAIS AGENTES PROMOTORES DE SAÚDE EM PRODUTOS LÁCTEOS

Autores

  • Cássia Pereira Barros
  • Roberto Pessanha da Silva Pires
  • Maria Carmela Kasnowski Holanda Duarte
  • Mônica Queiroz de Freitas
  • Adriano Gomes da Cruz

Resumo

O desenvolvimento de um produto probiótico precisa atender critérios rigorosos para que as culturas bacterianas sejam capazes de sobreviver à produção industrial em larga escala, na quantidade preconizada até o seu consumo para produzir benefícios à saúde. No entanto, o conceito de paraprobióticos surgiu para indicar que células bacterinas não viáveis poderiam fornecer benefícios à saúde semelhantes aos produzidos pelas células vivas, o que demonstra que nem todos os mecanismos e efeitos terapêuticos probióticos estão relacionados à viabilidade. Nesse contexto, a utilização de paraprobióticos como ingredientes funcionais para produtos lácteos proporciona maior facilidade e conveniência durante o manuseio industrial devido à estabilidade numa ampla faixa de temperatura e vida útil prolongada. Além de não oferecem risco quando administrados a indivíduos imunossuprimidos. Aqui, revisamos brevemente os o conceito de paraprobióticos, os processos de inativação utilizados para sua produção, as principais vantagens da sua aplicação na indústria de laticínios em relação aos micróbios viáveis, assim como evidências científicas de seus efeitos promotores de saúde.

Referências

Aebisher, D., Bartusik, D. & Tabarkiewicz, J. (2017). Laser flow cytometry as a tool for the advancement of clinical medicine. Biomedicine & Pharmacotherapy, 85, 434-443.

Ambros, S., Mayer, R., Schumann, B. & Kulozik, U. (2018). Microwave-freeze drying of lactic acid bacteria: Influence of process parameters on drying behavior and viability. Innovative Food Science and Emerging Technologies, 48, 90-98.

Ananta, E, & Knorr, D. (2009). Comparison of inactivation pathways of thermal or high pressure inactivated Lactobacillus rhamnosus ATCC 53103 by flow cytometry analysis. Food Microbiology, 26, 542-6.

Arku, B., Fanning, S. & Jordan, K. (2011). Flow cytometry to assess biochemical pathways in heat-stressed Cronobacter spp. (formerly Enterobacter sakazakii). Journal of Applied Microbiology, 111, 616-624.

Aureli, P., Fiore, A., Scalfaro, C., Casale, M. & Franciosa, G. (2010). National survey outcomes on commercial probiotic food supplements in Italy. International Journal of Food Microbiology, 137, 265-273.

Barros, C.P., Guimarães, J.T., Esmerino, E.A., Duarte, M.C.K.H., Silva, M.C., Silva, R., Ferreira, B.M., Sant’Ana, A.S., Freitas, M.Q., Cruz, A.G. 2020. Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science. 32, 1-8.

Begum, A.A., Jakaria, D.M., Anisuzzaman, S., Islam, M. & Mahmud, S.A. (2015). Market assessment and product evaluation of probiotic containing dietary supplements available in Bangladesh market. Journal of Pharmacology, Article ID 763796, 2015, 5.

Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C. & Gil, A. (2012), Probiotic mechanisms of action. Annals of Nutrition & Metabolism, 61, 160-174.

Bigliardi, B. & Galati, F. (2013). Innovation trends in food industry: the case of functional foods. Trends Food Science and Technology, 31, 118-129.

Chen, M.F., Huang, S.Y., Liu, Y.C., Tseng, S.N., Ojcius, D.M. & Shi, S.R. (2017). Pretreatment with a heat-killed probiotic modulates monocyte chemoattractant protein-1 and reduces the pathogenicity of influenza and enterovirus 71 infections, Mucosal Immunology, 10, 215-227.

Chen, Y.-T., Hsieh, P.-S., Ho, H.-H., Hsieh, S.-H., Kuo, Y.-W., Yang, S.-F. & Lin, C.-w. (2020). Antibacterial activity of viable and heat‐killed probiotic strains against oral pathogens. Letters in Applied Microbiology, 70, 310-317.

Colombo, M., Todorov, S.D., Eller, M. & Nero, L.A. (2018). The potential use of probiotic and beneficial bacteria in the Brazilian dairy industry. Journal of Dairy Research, 85, 487–496.

Cronin, U.P. & Wilkinson, M.G. (2010). The potential of flow cytometry in the study of Bacillus cereus. Journal of Applied Microbiology, 108, 1-16.

Cryan, J.F. & Dinan, T.G. (2012). Mind-altering microorganisms: The impact of the gut microbiota on brain and behavior. Nature Reviews Neuroscience, 13, 701-712.

Dash, G., Raman, R. P., Prasad. K.P., Makesh, M., Pradeep, M.A. & Sen, S. (2015). Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish & Shellfish Immunology, 43, 167-174.

de Almada, C.N., Almada, C.N., Martinez, R.C. & Sant’Ana, A.S. (2015). Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Applied Microbiology and Biotechnology, 99, 4175-4199.

de Almada, C.N., Almada, C.N., Martinez, R.C.R. & Sant’ana, A.S. (2016). Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Science & Technology, 58, 96-114.

Deshpande, G., Athalye-Jape, G. & Patole, S. (2018). Para-probiotics for Preterm Neonates—The Next Frontier. Nutrients, 10, 871-879.

Dinan, T.G., Stanton, C. & Cryan, J.F. (2013). Psycobiotics: A novel class of psychotropic. Biological Psychiatry, 74, 720-726.

Domingos, J.J.S. (2017). Review of the role of probiotics in gastrointestinal diseases in adults. Gastroenterología y Hepatología (English Edition), 40, 417-429.

Elangovan, A., Allrgretti, J.R., Fischer, M. 2019. Microbiota modulation-based therapy for luminal GI disorders: current applications of probiotics and fecal microbiota transplantation. Expert Opinion on Biological Therapy, 19, 1343-1355.

Foligné, B., Daniel, C. & Pot, B. (2013). Probiotics from research to market: the possibilities, risks and challenges. Current Opinion in Microbiology, 16, 284-292.

Fontana, L., Bermudez-Brito, M., Plaza-Diaz, J., Munoz-Quezada, S. & Gil, A. (2013). Sources, isolation, characterisation and evaluation of probiotics. British Journal of Nutrition, 109, 35-50.

Forssten, S.D., Sindelar, C.W. & Ouwehand, A.C. (2011). Probiotics from an industrial perspective. Anaerobe, 17, 410-413.

Fredua-Agyeman, M., Parab, S. & Gaisford, S. (2016). Evaluation of commercial probiotic products. British Journal of Pharmacology, 1, 84-89.

Francavilla, R., Cristofori, F., Vacca, M., Barone, M. & Angelis, M. (2020). Advances in understanding the potential therapeutic applications of gut microbiota and probiotic mediated therapies in celiac disease. Expert Review of Gastroenterology & Hepatology. Disponível em https://doi.org/10.1080/17474124.2020.1745630

Fujii, T., Jounai, K., Horie, A., Takahashi, H., Suzuki, H., Ohshio, K., Fujiwara, D. & Yamamoto, N. (2017). Effects of heat-killed Lactococcus lactis subsp. lactis JCM 5805 on mucosal and systemic immune parameters, and antiviral reactions to influenza virus in healthy adults; a randomized controlled double-blind study. Journal of Functional Foods, 35, 513-521.

Fuller, R. (1989). Probiotics in man and animals. The Journal of Applied Bacteriology, 66, 365-378.

Generoso, S. V., Viana, M.L., Santos, R.G., Arantes, R.M.E., Martins, F.S., Nicoli, J.R., Machado, J. A. N., Correia, M.I.T.D. & Cardoso, V.N. (2011). Protection against increased intestinal permeability and bacterial translocation induced by intestinal obstruction in mice treated with viable and heat-killed Saccharomyces boulardii. European Journal of Nutrition, 50, 261-269.

Granato, D., Branco, G.F., Cruz, A. G., Faria, J.A.F. & Sha, N.P. (2010). Probiotic Dairy Products as Functional Foods. Comprehensive Reviews in Food Science and Food Safety, 9, 455-470.

Grzeskowiak, L., Collado, M.C., Beasley, S. Salminen, S. (2014). Pathogen exclusion properties of canine probiotics are influenced by the growth media and physical treatments simulating industrial processes. Journal of Applied Microbiology. 116, 1308-1314.

Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merestein, D.J., Pot, D.B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C. & Sanders, M.E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514.

Ishikawa, H., Kutsukake, E., Fukui, T., Sato, I., Shirai, T., Kurihara, T., Okada, N., Danbara, H., Toba, M., Kohda, N., Maeda, Y., Matsumoto, T. (2010). Oral Administration of Heat-Killed Lactobacillus plantarum Strain b240 Protected Mice against Salmonella enterica Serovar Typhimurium. Bioscience, Biotechnology and Biochemistry, 74, 1338–1342.

Kerry, R.G., Patra, J.K., Gouda, S., Park, Y., Shin, H-S. & Das, G. (2018) Benefaction of probiotics for human health: a review. Journal of Food and Drug Analysis, 26, 927–939.

Kim, J.-Y., Park, B.-K., Park, H.-J., Park, Y.-H., Kim, B.-O. & Pyo, S. (2013). Atopic dermatitis-mitigating effects of new Lactobacillus strain, Lactobacillus sakei probio 65 isolated from Kimchi. Journal of Appied Microbiology, 115, 517–26.

Lopez, M., Li, N., Kataria, J., Russel, M. & Neu, J. (2008). Live and Ultraviolet- Inactivated Lactobacillus rhamnosus GG Decrease Flagellin-Induced Interleukin-8 Production in Caco-2 Cells. The Journal of Nutrition, 138, 2264-2268.

Lutgendorff F., Akkermans L.M.A. & Söderholm J.D. (2008). The role of microbiota and probiotics in stress-induced gastrointestinal damage. Currente Molecular Medicine, 8, 282–298.

Michelutti, L., Bulfoni, M. & Nencioni, E. (2020). A novel pharmaceutical approach for the analytical validation of probiotic bacterial count by flow cytometry. Journal of Microbiological Methods, 170, 105834.

Montané, E., Barriocanal, A.M., Arellano, A.L., Valderrama, A., Sanz, Y. & Cardona, P. (2014). Clinical trial with the food supplement Nyaditum resae: a new tool to reduce the risk of developing active tuberculosis (45th World Conference on Lung Health, Barcelona) Int. J. Tuberc. Lung Cancer, 18, S427.

Murata, M., Kondo, J., Iwabuchi, N., Takahashi, S., Yamauchi, K., Abe, F. & Miura, K. (2018). Effects of paraprobiotic Lactobacillus paracasei MCC1849 supplementation on symptoms of the common cold and mood states in healthy adults. Beneficial Microbes. 9, 855-864.

Nakamura, S. & Mitsunaga, F. (2018). Anti-Allergic Effect of Para-Probiotics from Non-Viable Acetic Acid Bacteria in Ovalbumin-Sensitized Mice. Food and Nutrition Sciences, 9, 1376-1385.

Newaj-Fyzul, A., Adesiyun, A.A., Mutani, A., Ramsubhag, A., Brunt, J. & Austin, B. (2007). Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of Applied Microbiology, 103, 1699-1706.

Nishida, K., Sawada, D., Kawai, T., Kuwano, Y., Fujiwara, S. & Rokutan, K. (2017a). Para‐psychobiotic Lactobacillus gasseri CP2305 ameliorates stress‐related symptoms and sleep quality. Journal of Applied Microbiology, 123, 1561-1570.

Nishida, K., Sawada, D., Kawai, T., Kuwano, Y., Tanaka, H., Sugawara, T., Aoki, Y., Fujiwara, S. & Rokutan, K. (2017b). Daily administration of paraprobiotic Lactobacillus gasseri CP2305 ameliorates chronic stress-associated symptoms in Japanese medical students. Journal of Functional Foods, 36, 112-121.

Oelchlaeger, T.A. (2010). Mechanisms of probiotic actions: A review. International Journal of Medical Microbiology, 300, 57-62.

Oggioni, M. R., Pozzi, G., Valensin, P.E., Galieni, P. & Bigazzi, C. (1998). Recurrent septicemia in an immunocompromised patient due to probiotic strains of Bacillus subtilis. Journal of Clinical Microbiology, 36, 325-326.

Orlando, A., Refolo, M.G., Messa, C., Aamati, L., Lavermicocca, P., Guerra, V. & Russo, F. (2012). Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutrition and Cancer, 64, 1103-1011.

Othman, M.B. & Sakamoto. (2020). Effect of inactivated Bifidobacterium longum intake on obese diabetes model mice (TSOD). Food Research International, 129, 18792.

Ozer, B.H. & Kirmaci, H.A. (2010). Functional milks and dairy beverages. International Journal of Dairy Technology, 63, 1-15.

Piqué, N., Berlanga, M. & Miñana-Galbis, D. (2019). Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. International Journal of Molecular Sciences, 20, 2534.

Prakash, S., Rodes, L., Coussa-Charley, M. & Tomaro-Duchesneau, C. (2011). Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics, 5, 71-86.

Rajilic-Stojanovic, M. (2013). Function of the microbiota. Best Practice & Research Clinical Gastroenterology, 27, 5-16.

Raymond, Y. & Champagne, C.P. (2015). The use of flow cytometry to accurately ascertain total and viable counts of Lactobacillus rhamnosus in chocolate. Food Microbiology, 46, 176-183.

Raz, E. & Rachmilewitz, D. (2005). Inactivated probiotic bacteria and methods of use thereof. Patent n.US20050180962 A1, 18 ago.

Rodriguez, V.C.C., Silva, L.G.S., Simabuco, F.M., Venema, K. & Antunes, A.E.C. (2019). Survival, metabolic status and cellular morphology of probiotics in dairy products and dietary supplement after simulated digestion. Journal Functional Foods, 55, 126-134.

Saccaro, D.M., Tamine, A.Y., Pilleggi, ALOPS. & Oliveira, M.N. (2009). The viability of three probiotic organisms grown with yoghurt starter cultures during storage for 21 days at 4°C. International Journal of Dairy Technology, 62, 397–404.

Safari, M.S., Keyhanfar, M. & Shafiei. (2019). Investigating the antibacterial effects of some Lactobacillus, Bifidobacterium and acetobacter strains killed by different methods on Streptococcus mutans and Escherichia coli. 8, 103-111.

Sampson, T.R. & Mazmanian, S.K. (2015). Control of brain development, function, and behavior by the microbiome. Cell Host & Microbe, 17, 565-576.

Salar-Behzadi, S., Wu, S., Toegel, S., Hofrichter, M., Altenburger, I., Unger, F., Wirth, M. & Viernstein H. (2013). Impact of heat treatment and spray drying on cellular properties and culturability of Bifidobacterium bifidum BB-12. Food Research International, 54, 93-101.

Salazar-Lindo, E., Figueroa-Quintanilla, D., Caciano, M.I., Reto-Valiente, V., Chauviere, G. & Colin, P. (2007). Effectiveness and safety of Lactobacillus LB in the treatment of mild acute diarrhea in children, Journal of Pediatric Gastroenterology and Nutrition, 44, 571-576.

Sanz, Y. (2007). Ecological and functional implications of the acid‐adaptation ability of Bifidobacterium: a way of selection improved probiotic strains. International Dairy Journal, 12, 1284-1289.

Sarkar, S. (2013). Microbiological Considerations for Probiotic Supplemented Foods. International Journal of Microbiology & Advanced lmmunology, 1, 1-7.

Sarkar, S. (2018). Whether viable and dead probiotic are equally efficacious? Nutrition & Food Science, 48, 285-300.

Sawada, D., Sugawara, T., Ishida, Y., Aihara, K., Aoki, Y., Takehara, I., Takano, K. & Fujiwara, S. (2016). Effect of continuous ingestion of a beverage prepared with Lactobacillus gasseri CP2305 inactivated by heat treatment on the regulation of intestinal function. Food Research International, 79, 33-39.

Sawada, D., Kuwano, Y., Tanaka, H., Hara, S., Uchiyama, Y., Sugawa, T., Fujiwara, S., Rokutan, K. & Nishida, K. (2019). Daily intake of Lactobacillus gasseri CP2305 relieves fatigue and stress-related symptoms in male university Ekiden runners: A double-blind, randomized, and placebo-controlled clinical trial. Journal Functional Foods, 57, 465-476.

Segawa, S., Wakita, Y., Hirata, H. & Watari, J. (2008). Oral administration of heat-killed Lactobacillus brevis SBC8803 ameliorates alcoholic liver disease in ethanol-containing diet-fed C57BL/6N mice. International Journal of Food Microbiology, 128, 371-377.

Shigwedha, N., Zhang, L., Sichel, L., Jia, L., Gong, P., Liu, W., Wang, S., Zhanh, S., Han, X. & Gao, W. (2014). More than a Few LAB Alleviate Common Allergies: Impact of Paraprobiotics in Comparison to Probiotical Live Cells. Journal of Biosciences and Medicines, 2, 56-64.

Shin, H.S., Park, S.Y., Lee, D.K., Kim, S.A., An, H.M., Kim, J.R., Kim, M.J., Cha, M.G., Lee, S.W., Kim, K.J., Lee, K.O. & Ha, N.J. (2010). Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Archives of Pharmacal Research, 33, 1425-1431.

Singh, S.T., Kamilya, D., Kheti, B., Bordoloi, B. & Parhi, J. (2017). Paraprobiotic preparation from Bacillus amyloliquefaciens FPTB16 modulates immune response and immune relevant gene expression in Catla catla (Hamilton, 1822). Fish & Shellfish Immunology, 66, 35-42.

Shinkai, S., Toba, M., Saito, T., Sato, I., Tsubouchi, M., Taira, K., Kakumoto, K., Inamatsu, T., Yoshida, H., Fujiwara, Y., et al. (2013). Immunoprotective effects of oral intake of heat-killed Lactobacillus pentosus strain b240 in elderly adults: a randomised, double-blind, placebo-controlled trial. British Journal of Nutrition, 109, 1856-1865.

Sugahara, H., Yao, R., Odamaki, T. & Xiao, J.Z. (2017). Differences between live and heat-killed Bifidobacteria in the regulation of immune function and the intestinal environment. Beneficial Microbes, 8, 463–472.

Sugawara, T., Sawada, D., Ishida, Y., Aihara, K., Aoki, Y., Takehara, I., Takano, K. & Fujiwara, S. (2016), Regulatory effect of paraprobiotic Lactobacillus gasseri CP2305 on gut environment and function. Microbial Ecology in Health and Disease, 27, 30259.

Sugawara, T., Sawada, D., Yanagihara, S., Aoki, Y., Takehara, I., Sugahara, H., Hirota, T., Nakamura, Y. & Ishikawa, S. (2020). Daily Intake of Paraprobiotic Lactobacillus amylovorus CP1563 Improves Pre-Obese Conditions and Affects the Gut Microbial Community in Healthy Pre-Obese Subjects: A Double-Blind, Randomized, Placebo-Controlled Study. Microorganisms, 8, 304.

Tanzer, J. M., Thompson, A., Lang, C., Cooper, B., Hareng, L., Gamer, A.. Reindl, A. & Pompejus, M. (2010). Caries inhibition by and safety of Lactobacillus paracasei DSMZ16671. Journal of Dental Research, 89, 921-926.

Taveriniti, V. & Guglielmetti, S. (2011). The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). Genes & Nutrition, 6, 261-274.

Toda, K., Yamauchi, Y., Tanaka, A., Kuhara, T., Odamaki, T., Yoshimoto, S. & Xiao, J-Z. (2020). Heat-Killed Bifidobacterium breve B-3 Enhances Muscle Functions: Possible Involvement of Increases in Muscle Mass and Mitochondrial Biogenesis. Nutrients, 12, 103390.

Vinderola, G., Reinheimer, J. & Salminen S. (2019). The enumeration of probiotic issues: from unavailable standardised culture media to a recommended procedure? International Dairy Journal, 96, 58-65.

Wilkinson, M.G. (2018). Flow cytometry as a potential method of measuring bacterial viability in probiotic products: A review. Trends in Food Science & Technology, 78, 1-10.

Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, R.F., Mazmanian, S.K. & Hsiao, E.Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161, 264-276.

Zendeboodi, F., Khorshidian, N., Mortazavian, A.M. & Cruz, A.G. Probiotic: conceptualization from a new approach. (2020). Currente Opinion on Food Science. In press.

Downloads

Publicado

2020-05-11

Edição

Seção

Microbiologia de Alimentos