Cádmio em hortaliças: comparando agricultura orgânica e convencional

Autores

  • Guisleyne Aparecida D’arc de Carvalho Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro - Campus Rio de Janeiro
  • Pedro Lucas Barros Palma
  • Emanuelle D. S. da Silva
  • Karine Yasmin Conti Perez Melhado
  • Simone Lorena Quitério de Souza
  • Renata Santana Lorenzo Raices

Resumo

Diante de uma crescente conscientização no que diz respeito a segurança alimentar, a sociedade tem sido cada vez mais criteriosa em relação à escolha dos alimentos a consumir. Por conta de tal demanda, os órgãos internacionais e nacionais vinculados a Organização Mundial de Saúde e ao Ministério da Saúde vêm estabelecendo critérios de análises e limites máximos permitidos de contaminantes em alimentos. Neste contexto, destaca-se o consumo de alimentos contaminados por metais traço, especificamente, hortaliças. Metais traço, como o cádmio são classificados com potencial carcinogênico e ocorrem como contaminantes em diferentes tipos de alimentos. Pretendendo enfatizar a importância da segurança alimentar e saúde pública, este trabalho teve como objetivo determinar e comparar a concentração de cádmio (Cd) em hortaliças cultivadas de forma convencional e orgânica, visto que a grande maioria dos consumidores acredita que os produtos orgânicos são mais saudáveis e seguros. O cádmio foi determinado através do uso da técnica de absorção atômica em forno de grafite. Verificou-se que as hortaliças orgânicas apresentaram concentrações menores de Cd quando comparadas com as hortaliças cultivadas por método convencional. Destaca-se que ambas apresentaram concentrações de Cd inferiores aos limites estabelecidos pela RDC nº 42/2013.

Referências

Antoniadis, V. et al. (2017). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186:192-200. Disponível em: www.ncbi.nlm.nih.gov/pubmed/27117508.

Aoshima, K. (2016). Itai-itai disease: renal tubular osteomalacia induced by environmental exposure to cadmium-historical review and perspectives. Soil Science and Plant Nutrition, 62: 319–326. Disponível em: www.ncbi.nlm.nih.gov/pubmed/23095355.

Araujo, M. C. et al. (2010). Elaboração de questionário de frequência alimentar semi quantitativo para adolescentes da região metropolitana do Rio de Janeiro, Brasil. Revista de Nutrição, 23(2):179-189. Disponível em: www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-52732010000200001.

Bothe, H. (2011). Plants in heavy metal soils. Detoxification of heavy metals, p. 35–57. Disponível em: link.springer.com/chapter/10.1007/978-3-642-21408-0_2.

Brasil. (2003). Ministério da Saúde. Agência Nacional de Vigilância Sanitária (ANVISA). Regulamento técnico de porções de alimentos embalados para fins de rotulagem nutricional. Resolução RDC nº 359, de 23 de dezembro de 2003. Disponível em: < www.vigilanciasanitaria.sc.gov.br/index.php/download/category/192- rotulagem?download=918:resolucao-rdc-n-359-2003-porcao-e-medida-caseira.

Brasil. (2016). Ministério da Saúde. Agência Nacional de Vigilância Sanitária (ANVISA). Programa de análise de resíduos de agrotóxicos em alimentos (Relatório PARA). Disponível em: portal.anvisa.gov.br/documents/219201/2782895/Relat%C3%B3rio+PARA/a6975824-74d6-4b8e-acc3-bf6fdf03cad0?version=1.0.

Bressy, F.C., Brito, G.B., Barbosa, I.S., Teixeira, L.S.G., Korn, M.G.A. (2013). Determination of trace element concentrations in tomato samples at different stages of maturation by ICP OES and ICP-MS following microwave-assisted digestion. Microchemical Journal 109:145–149.

Confederação da Agricultura e Pecuária do Brasil (CNA Brasil). Disponível em: www.cnabrasil.org.br/assets/arquivos/hortalicas_balanco_2017.pdf.

Corguinha, A. P. B. et al. (2015). Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. Journal Food Composition, 37: 143–150. Disponível em: core.ac.uk/download/pdf/82456001.pdf.

Dala-Paula, B. M. et al. (2018). Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environmental Pollution, 242: 383–389. Disponível em: www.ncbi.nlm.nih.gov/pubmed/29990946.

Defarge, N., Vendômoisb, J. S., Séralinia, G. E. (2018). Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicology Reports, 5: 156–163. Disponível em: www.sciencedirect.com/science/article/pii/S221475001730149X.

Douay, F. et al. (2013). Assessment of potential health risk for inhabitants living near a former lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. Environmental Monitoring and Assessment, 185: 3665–3680. Disponível em: www.ncbi.nlm.nih.gov/pubmed/22886627.

El-Kady, A. A., AbdeL-Wahh, M. A. (2018). Occurrence of trace metals in foodstuffs and their health impact. Trends in Food Science & Technology, 75: 36–45. Disponível em: www.sciencedirect.com/science/article/abs/pii/S0924224418300177.

FAO/WHO. 2016.Disponível em: fao.org/faostat/en/?#data/QC.

França, F. C. et al. (2017). Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil. Food and Chemical Toxicology, 215: 171-176. Disponível em: www.sciencedirect.com/science/article/pii/S0308814616312018.

Gaweda, M., Niziol-Lukaszewska, Z., Szopinska, A. (2012). The contents of selected metals in carrot cultivated using conventional, integrated and organic method. Acta Horticulturae, 936: 257–263. Disponível em: www.actahort.org/books/936/936_31.htm.

Gomiero, T. (2018). Food quality assessment in organic vs. conventional agricultural produce: findings and issues. Applied Soil Ecology, 123: 714-728. Disponível em: www.sciencedirect.com/science/article/pii/S0929139317302573.

González, N. et al. (2019). Occurrence of environmental pollutants in foodstuffs: A review of organic vs. conventional food. Food and Chemical Toxicology, 125: 370–375. Disponível em: www.ncbi.nlm.nih.gov/pubmed/30682385.

Gupta, N. et al. (2019). Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - A review. Science of the Total Environment, 651: 2927–2942. Disponível em: www.sciencedirect.com/science/article/pii/S0048969718339202.

Hadayat, N. et al. (2018). Assessment of trace metals in five most-consumed vegetables in the US: Conventional vs. organic. Environmental Pollution, 243: 292-300. Disponível em: < www.ncbi.nlm.nih.gov/pubmed/30193223.

Hanebuth, T.J.J. et al. (2018). Hazard potential of widespread but hidden historic offshore heavy metal (Pb, Zn) contamination (Gulf of Cadiz, Spain). Science of the Total Environment, 637-638:561-576. Disponível em: www.ncbi.nlm.nih.gov/pubmed/29754090.

Hattab, S. et al. (2018). Metals and micronutrients in some edible crops and their cultivation soils in eastern-central region of Tunisia: a comparison between organic and conventional farming. Food Chemistry, 270: 293–298. Disponível em: www.ncbi.nlm.nih.gov/pubmed/30174049.

Hou, S., Zheng, N., Tang L., Ji, X. (2018). Effects of cadmium and cupper mixtures to carrot and pakchoiunder greenhouse cultivation condition. Ecotoxicology and Environmental Safety 159: 172-181.

Hu, A. W. et al. (2017). Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk. Chemosphere, 167: 82–90. Disponível em: www.ncbi.nlm.nih.gov/pubmed/27710846.

Hu, J. et al. (2013). Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model. Chemosphere, 91: 455-461. Disponível em: www.ncbi.nlm.nih.gov/pubmed/23273879.

Hurtado-Barroso, B. C. et al. (Organic food and the impact on human health. Critical Reviews in Food Science and Nutrition, 59(4):704-714. Disponível em: www.ncbi.nlm.nih.gov/pubmed/29190113.

Kibblewhite, M. G. (2018). Contamination of agricultural soil by urban and peri-urban highways: overlooked priority? Environmental Pollution, 242: 1331–1336. Disponível em: www.ncbi.nlm.nih.gov/pubmed/30125843.

Krejcová, A. et al. (2016). An elemental analysis of conventionally, organically and self-grown carrots. Food and Chemical Toxicology, 192: 242-249. Disponível em: www.ncbi.nlm.nih.gov/pubmed/26304343.

Kumari, D., John, S. (2019). Health Risk Assessment of Pesticide Residues. In: Fruits and Vegetables from Farms and Markets of Western Indian Himalayan Region. Chemosphere, 224:162-167. Disponível em: www.ncbi.nlm.nih.gov/pubmed/30822723.

Li, G. et al. (2018). Urban soil and human health: a review. European Journal of Soil Science, 69: 196-215. Disponível em: onlinelibrary.wiley.com/doi/full/10.1111/ejss.12518.

Lucchini, R. G., et al. (2019). Neurocognitive impact of metal exposure and social stressors among schoolchildren in Taranto, Italy. Environmental Health, 18: 67. Disponível em: ehjournal.biomedcentral.com/articles/10.1186/s12940-019-0505-3.

Mahmoud-Hamed, M. S. E et al. (2019). Distribution and health risk assessment of cadmium, lead, and mercury in freshwater fish from the right bankof Senegal River in Mauritania. Environmental Monitoring and Assessment, p. 191 (8): 493. Disponível em: www.ncbi.nlm.nih.gov/pubmed/31300901.

Mansour, S.A., Belal, M.H., Abou-arab, A.A.K., Ashour, H.M., Gad, M.F. (2009). Evaluation of some pollutant levels in conventionally and organically farmed potato tubers and their risks to human health. Food Chemistry Toxicology, 47: 615–624. Disponível em: doi.org/10.1016/j.fct.2008.12.019.

Mercosur (2011). GMC. Resolução n.12/11, Regulamento Técnico Mercosul sobre limites máximos de contaminantes inorgânicos em alimentos, 18pp.

Nabulo, G., Black, C. R., Young, S. D. (2011). Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge. Environmental Pollution, 159: 368–376. Disponível em: europepmc.org/abstract/med/21129831.

Paltseva, A., Cheng, Z., Deeb, M., Groffman, P.M., Shaw, R.K., MarkMaddaloni. (2018). Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Science of the Total Environment 640–641:273–283.

Peralta-Videa, J. R. et al. (2009). The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. International Journal of Biochemistry and Cell Biology, 41(8):1665–1677. Disponível em: www.ncbi.nlm.nih.gov/pubmed/19433308.

Perveen, R. et al. (2015). Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims- A Comprehensive Review. Critical Reviews in Food Science and Nutrition, 55: 919-929. Disponível em: < www.ncbi.nlm.nih.gov/pubmed/24915375.

Sandersa, A. P. et al. (2019). Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12–19 in NHANES 2009–2014. Environment International, 131: 104993. Disponível em: www.sciencedirect.com/science/article/pii/S0160412019301990.

Sarah, R. et al. (2019). Bioaccumulation of heavy metals in Channa punctatus (Bloch) in river Ramganga (U.P.), India. Saudi Journal of Biological Sciences, 26(5): 979-984. Disponível em: www.sciencedirect.com/science/article/pii/S1319562X19300336.

Sawut, A. C. R. et al. (2018). Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China. Science of the Total Environment, 642: 864–878. Disponível em: www.ncbi.nlm.nih.gov/pubmed/29925057.

Sharafi, K. et al. (2019). Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model – Comparison of calculated human health risk from raw, cooked and digested rice. Food Chemistry, 299: 125126. Disponível em: www.ncbi.nlm.nih.gov/pubmed/31284243.

UNIFESP. Estilo de Vida Saudável. Disponível em: saude.br/index.php/articles/artigos/doencas-cronicas-nao-transmissiveis/111-doencas-cronicas-nao-transmissiveis/236-aumenta-o-consumo-de-frutas-e-hortalicas-na-populacao-brasileira-contudo-a-mesma-permanece-sedentaria.

Varol, M., Kaya, G. K., Alp, A. (2017). Heavy metal and arsenic concentrations in rainbow trout (Oncorhynchus mykiss) farmed in a dam reservoir on the Firat (Euphrates) River: Risk-based consumption advisories. Science of the Total Environment, 599-600:1288-1296. Disponível em: www.ncbi.nlm.nih.gov/pubmed/28525936.

Vieira, E.L. (2019). Apontamentos e Práticas de Fisiologia Pós-colheita de Frutos e Hortaliças. Centro de Ciências Agrárias, Ambientais e Biológicas – CCAAB. Universidade Federal do Recôncavo da Bahia – UFRB. Disponível em:

Wang, M. et al. (2018). Heavy metal contamination and ecological risk assessment of swine manure irrigated vegetable soils in Jiangxi Province, China. Bulletin of Environmental Contamination and Toxicology, 54 (5): 1350–1356. Disponível em: www.ncbi.nlm.nih.gov/pubmed/29546499.

Willett, W. C. (1998). Nutritional Epidemiology. The American Journal of Clinical Nutrition. Disponível em: academic.oup.com/ajcn/article/69/5/1020/4714912.

Wroniak, M., Rekas, A. (2017). A preliminary study of PCBs, PAHs, pesticides and trace metals contamination in cold-pressed rapeseed oils from conventional and ecological cultivations. Journal Food Scientists & Technologists, 54(5):1350-1356. Disponível em: www.ncbi.nlm.nih.gov/pubmed/28416887.

www2.ufrb.edu.br › cca-217-fisiologia-pos-colheita-de-frutos-e-hortalicas

Xu, M. Y. et al. (2017). Joint toxicity of chlorpyrifos and cadmium on the oxidative stress and mitochondrial damage in neuronal cells. Food and Chemical Toxicology, 103: 246–252. Disponível em: www.ncbi.nlm.nih.gov/pubmed/28286310.

Zheng, N. et al. (2012). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408 (4): 726–733. Disponível em: www.sciencedirect.com/science/article/pii/S0048969709010572.

Zhu, F. et al. (2011). Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China. Food and Chemical Toxicology, 49: 3081-3085. Disponível em: www.ncbi.nlm.nih.gov/pubmed/21964195.

Downloads

Publicado

2020-01-25

Edição

Seção

Meio Ambiente e Alimentos