NANOPARTÍCULAS POLIMÉRICAS PARA ENTREGA DE FÁRMACOS AO CÉREBRO POR ADMINISTRAÇÃO INTRANASAL: UMA BREVE REVISÃO

Autores

  • Kaique Alves Brayner Pereira Universidade Federal do Rio de Janeiro
  • Cláudia R.E. Mansur UFRJ
  • Patrícia Barbosa Jurgilas FIOCRUZ

DOI:

https://doi.org/10.22407/1984-5693.2024.v16.p.20241606

Resumo

A barreira hematoencefálica (BHE) é um grande desafio biológico para o direcionamento de fármacos ao cérebro pela via sistêmica, o que diminui a eficiência terapêutica de inúmeros fármacos. Nesse contexto, a via nasal pode ser utilizada para perpassar a BHE pelos nervos olfatório e trigêmio presentes na cavidade nasal, porém, ainda assim, apresenta limitações, principalmente, relacionadas a degradação do fármaco no ambiente da mucosa nasal e o efeito de depuração. Dessa forma, nanopartículas têm sido utilizadas para contornar essas limitações e tornar a administração de fármacos através do nariz mais eficiente. Dentre as nanopartículas existentes, as nanopartículas poliméricas oferecem algumas vantagens devido a sua liberação controlada e a sua superfície passível de funcionalização para favorecer o direcionamento. Diante do exposto, esse trabalho buscou fazer um levantamento das principais características das nanopartículas poliméricas possíveis para o direcionamento intranasal, os principais polímeros utilizados, assim como algumas das moléculas e biomoléculas utilizadas como agentes de funcionalização.

Referências

AHMAD, N; AHMAD, R; ALAM, MA; AHMAD, FJ. Quantification and Brain Targeting of Eugenol-Loaded Surface Modified Nanoparticles Through Intranasal Route in the Treatment of Cerebral Ischemia. Drug Res. (Stuttg) 68(10), 584-595, 2018.

ALEX, AT; JOSEPH, A; SHAVI, G; RAO, JV; UDUPA, N. Development and evaluation of carboplatin-loaded PCL

nanoparticles for intranasal delivery. Drug Deliv. 23(7), 2144-2153, 2014.

ALMALIK, A; ALRADWAN, I; KALAM, MA; ALSHAMSAN, A. Effect of cryoprotection on particle size stability

and preservation of chitosan nanoparticles with and without hyaluronate or alginate coating. Saudi Pharm J. 25(6), 861-867, 2017.

ARAVIND, A; JEYAMOHAN, P; NAIR, R; VEERANARAYANAN, S; NAGAOKA, Y; YOSHIDA, Y. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng. 109(11), 2920-2931, 2012.

AWAD, R; AVITAL, A; SOSNIK, A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm Sin B. 13(5), 1866-1886, 2023.

BAAZAOUI, N; IQBAL, K. COVID-19 and Neurodegenerative Diseases: Prion-Like Spread and Long-Term Consequences. J Alzheimers Dis. 88(2), 399-416, 2022.

BANKS, WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev

Drug Discov. 15(4), 275-292, 2016.

BHARDWAJ, H; JANGDE, RK. Current updated review on preparation of polymeric nanoparticles for drug delivery

and biomedical applications. Next Nanotechnology 2, 100013, 2023.

BI, C; WANG, A; CHU, Y; LIU, S; MU, H; LIU, W; WU, Z; SUN, K; LI, Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson's disease treatment. Int J Nanomedicine 11,

-59, 2016.

BISWAS, AK; ISLAM, MR; CHOUDHURY, ZS; MOSTAFA, A; KADIR, MF. Nanotechnology based approaches in cancer therapeutics. Advances in Natural Sciences: Nanoscience and Nanotechnology 5(4), 043001, 2014.

BLANCO, E; SHEN, H; FERRARI, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 33(9), 941-951, 2015.

BORRAJO, ML; ALONSO, MJ. Using nanotechnology to deliver biomolecules from nose to brain - peptides, proteins, monoclonal antibodies and RNA. Drug Deliv Transl Res. 12(4), 862-880, 2022.

BOURGANIS V, KAMMONA O, ALEXOPOULOS A, KIPARISSIDES C. Recent advances in carrier mediated noseto-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 128, 337-362, 2018.

CEÑA, V; JÁTIVA, P. Nanoparticle crossing of blood-brain barrier: a road to new therapeutic approaches to central

nervous system diseases. Nanomedicine (Lond). 13(13), 1513-1516, 2018.

COSTA, CP; MOREIRA, JN; LOBO, JMS; SILVA, AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of. Acta Pharm Sin B. 11(4), 925-940, 2021.

COX, A; VINCIGUERRA, D; RE, F; MAGRO, RD; MURA, S; MASSERINI, M. Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier. Eur J Pharm.

Biopharm. 142, 70-82, 2019.

CROWE, TP; GREENLEE, MHW; KANTHASAMY, AG; HSU, WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 195, 44-52, 2018.

CRUCHO, CIC; BARROS, MT. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C Mater.Biol Appl. 80, 771-84, 2017.

DANEMAN R. The blood-brain barrier in health and disease. Ann Neurol. 72(5), 648-72, 2012.

DE LIMA, LS; MORTARI, MR. Therapeutic nanoparticles in the brain: A review of types, physicochemical properties

and challenges. Int J Pharm. 612:121367, 2022.

DHAS, N; MEHTA, T. Cationic biopolymer functionalized nanoparticles encapsulating lutein to attenuate oxidative

stress in effective treatment of Alzheimer's disease: A non-invasive approach. Int J Pharm. 586, 119553, 2020.

DJUPESLAND, PG; MESSINA, JC; MAHMOUD, RA. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv. 5(6), 709-733, 2014.

DONG X. Current Strategies for Brain Drug Delivery. Theranostic. 8(6), 1481-1493, 2018.

ELSABAHY, M, WOOLEY, KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc. Rev. 41(7), 2545-2561, 2012.

ELLAH, ANH; ABOUELMAGD, SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv. 14(2), 201-214, 2016.

EMAD, NA; AHMED, B; ALHALMI, A; ALZOBAIDI, N; AL-KUBATI, SS. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Technol. 64, 102642, 2021.

ESKANDARI, S; VARSHOSAZ, J; MINAIYAN, M; TABBAKHIAN, M. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int J Nanomedicine. 6, 363-71, 2011.

ESSA, D; CHOONARA, YE; KONDIAH, PPD; PILLAY, V. Comparative Nanofabrication of PLGA-Chitosan-PEG

Systems Employing Microfluidics and Emulsification Solvent Evaporation Techniques. Polymers (Basel). 12(9), 2020.

FORMICA, ML; REAL, DA; PICCHIO, ML; CATLIN, E, DONNELLY, RF; PAREDES, AJ. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Appl Mater Today. 29, 101631, 2022.

FURTADO, D; BJÖRNMALM, M; AYTON, S; BUSH, AI; KEMPE, K; CARUSO, F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Adv Mater. 30(46), e1801362, 2018.

GAMBARYAN, PY; KONDRASHEVA, IG; SEVERIN, ES; GUSEVA, AA; KAMENSKY, AA. Increasing the Efficiency of Parkinson's Disease Treatment Using a poly(lactic-co-glycolic acid) (PLGA) Based L-DOPA Delivery System. Exp Neurobiol. 23(3), 246-252, 2014.

GÄNGER, S; SCHINDOWSKI, K. Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa.

Pharmaceutics 10(3), 2018.

GAO H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 6(4), 268-286, 2016.

GARTZIANDIA, O; EGUSQUIAGUIRRE, SP; BIANCO, J; PEDRAZ, JL; IGARTUA, M; HERNANDEZ, RM; PRÉAT, V; BELOQUI, A. Nanoparticle transport across in vitro olfactory cell monolayers. Int J Pharm. 499(1-2), 81-89, 2016.

GARTZIANDIA, O; HERRAN, E; PEDRAZ, JL; CARRO, E; IGARTUA, M; HERNANDEZ, RM. Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf B Biointerfaces.

, 304-313, 2015.

GILL, S; LÖBENBERG, R; KU, T; ROA, W; PRENNER, E. Nanoparticles: Characteristics, Mechanisms of Action,

and Toxicity in Pulmonary Drug Delivery—A Review. J Biomed Nanotechnol. 3, 107-119, 2007.

GOMES, MJ; MENDES, B; MARTINS, S; SARMENTO, B. Nanoparticle Functionalization for Brain Targeting Drug

Delivery and Diagnostic. In: Aliofkhazraei M, editor. Handbook of Nanoparticles. Cham: Springer International

Publishing, 941-959, 2016.

GRIFFITHS, PC; CATTOZ, B; IBRAHIM, MS; ANUONYE, JC. Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering. Eur J Pharm Biopharm. 97(Pt A), 218-222, 2015.

GU, G; XIA, H; HU, Q; LIU, Z; JIANG, M; KANG, T. PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials. 34(1), 196-208, 2013.

GUO, J; GAO, X; SU, L; XIA, H; GU, G; PANG, Z. Aptamer functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 32(31), 8010-8020, 2011.

HAKKARAINEN, M. Aliphatic Polyesters: Abiotic and Biotic Degradation and Degradation Products. Degradable Aliphatic Polyesters. Berlin, Heidelberg: Springer Berlin Heidelberg, 113-138, 2002.

HE, H; YE, J; LIU, E; LIANG, Q; LIU, Q; YANG, VC. Low molecular weight protamine (LMWP): a nontoxic protamine substitute and an effective cell-penetrating peptide. J Control Release 193, 63-73, 2014.

HERSH, DS; WADAJKAR, AS; ROBERTS, N; PEREZ, JG; CONNOLLY, NP; FRENKEL, V; WINKLES, JA; WOODWORTH, GF; KIM, AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des. 22(9), 1177-1193, 2016.

HRUBÝ, M; FILIPPOV, SK; ŠTĚPÁNEK, P. Smart polymers in drug delivery systems on crossroads: Which way deserves following? Eur Polym J. 65, 82-97, 2015.

HUANG, Q; CHEN, Y; ZHANG, W; XIA, X; LI, H; QIN, M. Nanotechnology for enhanced nose-to-brain drug

delivery in treating neurological diseases. J Control Release. 366, 519-534, 2024.

ISLAM, Y; LEACH, AG; SMITH, J; PLUCHINO, S; COXONL, CR; SIVAKUMARAN, M; JAMES, D; AMOS, AF; MERITXELL, T; TOURAJ, E. Peptide based drug delivery systems to the brain. Nano Express. 1(1), 012002, 2020.

JAIN, K; SOOD, S; GOWTHAMARAJAN, K. Optimization of artemether-loaded NLC for intranasal delivery using central composite design. Drug Deliv. 22(7), 940-54, 2015.

JOJO, GM; KUPPUSAMY, G; DE, A; KARRI, VVSN. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer's disease using Box-Behnken design. Drug Dev Ind Pharm. 45(7),

-72, 2019.

KAKKAR, A; TRAVERSO, G; FAROKHZAD, OC; WEISSLEDER, R; LANGER, R. Evolution of macromolecular complexity in drug delivery systems. Nat Rev Chem. 1(8), 2017.

KAMALY, N; YAMEEN, B; WU, J; FAROKHZAD, OC. Degradable Controlled-Release Polymers and Polymeric

Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev. 116(4), 2602-2663, 2016.

KANAZAWA, T; TAKI, H; TANAKA, K; TAKASHIMA, Y; OKADA, H. Cell-penetrating peptide-modified block copolymer micelles promote direct brain delivery via intranasal administration. Pharm Res. 28(9), 2130-2139, 2011.

KHALIL, SK; EL-FEKY, GS; EL-BANNA, ST; KHALIL, WA. Preparation and evaluation of warfarin-β-cyclodextrin

loaded chitosan nanoparticles for transdermal delivery. Carbohydr Polym. 90(3), 1244-1253, 2012.

Kakkar A, Traverso G, Farokhzad OC, Weissleder R, Langer R. Evolution of macromolecular complexity in drug delivery systems. Nat Rev Chem. 2017;1(8).

Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev. 2016;116(4):2602-63.

Kanazawa T, Taki H, Tanaka K, Takashima Y, Okada H. Cell-penetrating peptide-modified block copolymer micelles promote direct brain delivery via intranasal administration. Pharm Res. 2011;28(9):2130-9.

Khalil SK, El-Feky GS, El-Banna ST, Khalil WA. Preparation and evaluation of warfarin-β-cyclodextrin loaded chitosan nanoparticles for transdermal delivery. Carbohydr Polym. 2012;90(3):1244-53.

Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release. 2017;268:364-89.

Khan A, Imam SS, Aqil M, Ahad A, Sultana Y, Ali A, et al. Brain Targeting of Temozolomide via the Intranasal Route Using Lipid-Based Nanoparticles: Brain Pharmacokinetic and Scintigraphic Analyses. Mol Pharm. 2016;13(11):3773-82.

KOU, L; BHUTIA, YD; YAO, Q; HE, Z; SUN, J; GANAPATHY, V. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types. Front Pharmacol. 9, 27, 2018.

KRISHNAMOORTHY, K; MAHALINGAM, M. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach. Adv Pharm Bull. 5(1), 57-67, 2015.

KUMARASAMY, M; SOSNIK, A. The Nose-To-Brain Transport of Polymeric Nanoparticles Is Mediated by Immune Sentinels and Not by Olfactory Sensory Neurons. Adv Biosyst. 3(12), e1900123, 2019.

LALANI, J; RATHI, M; LALAN, M; MISRA, A. Protein functionalized tramadol-loaded PLGA nanoparticles: preparation, optimization, stability and pharmacodynamic studies. Drug Dev Ind Pharm. 39(6), 854-864, 2013.

LAMPTEY, RNL; CHAULAGAIN, B; TRIVEDI, R; GOTHWAL, A; LAYEK, B; SINGH, J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics.

Int J Mol Sci. 23(3), 2022.

LAW, SL; HUANG, KJ; CHOU, HY. Preparation of desmopressin-containing liposomes for intranasal delivery. J. Control Release 70(3), 375-382, 2001.

LEE, D; MINKO, T. Nanotherapeutics for Nose-to-Brain Drug Delivery: An Approach to Bypass the Blood Brain Barrier. Pharmaceutics 13(12), 2021.

LI, J; FENG, L; FAN, L; ZHA, Y; GUO, L; ZHANG, Q. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials 32(21), 4943-4950, 2011.

Li SD, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta. 2009;1788(10):2259-66.

Li SD, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta. 2009;1788(10):2259-66.

Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, et al. Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy. ACS Nano. 2016;10(11):9999-10012.

Liu J, Liu Z, Pang Y, Zhou H. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J Nanobiotechnology. 2022;20(1):127.

Liu J, Qiu Z, Wang S, Zhou L, Zhang S. A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Biomed Mater. 2010;5(6):065002.

Liu Y, Hardie J, Zhang X, Rotello VM. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 2017;34:25-32.

Liu Z, Jiang M, Kang T, Miao D, Gu G, Song Q, et al. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials. 2013;34(15):3870-81.

Lofts A, Abu-Hijleh F, Rigg N, Mishra RK, Hoare T. Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs. 2022;36(7):739-70.

Madane RG, Mahajan HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv. 2016;23(4):1326-34.

Mainardes RM, Khalil NM, Gremião MP. Intranasal delivery of zidovudine by PLA and PLA-PEG blend nanoparticles. Int J Pharm. 2010;395(1-2):266-71.

Markowicz-Piasecka M, Markiewicz A, Darłak P, Sikora J, Adla SK, Bagina S, et al. Current Chemical, Biological, and Physiological Views in the Development of Successful Brain-Targeted Pharmaceutics. Neurotherapeutics. 2022;19(3):942-76.

Martínez-Jothar L, Doulkeridou S, Schiffelers RM, Sastre Torano J, Oliveira S, van Nostrum CF, et al. Insights into maleimide-thiol conjugation chemistry: Conditions for efficient surface functionalization of nanoparticles for receptor targeting. J Control Release. 2018;282:101-9.

McCall RL, Sirianni RW. PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J Vis Exp. 2013(82):51015.

Md S, Ali M, Baboota S, Sahni JK, Bhatnagar A, Ali J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm. 2014;40(2):278-87.

Mignani S, Shi X, Karpus A, Majoral JP. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. Eur J Med Chem. 2021;209:112905.

Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, et al. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev. 2014;114(15):7740-81.

Musumeci T, Pellitteri R, Spatuzza M, Puglisi G. Nose-to-brain delivery: evaluation of polymeric nanoparticles on olfactory ensheathing cells uptake. J Pharm Sci. 2014;103(2):628-35.

Nair KGS, Ramaiyan V, Sukumaran SK. Enhancement of drug permeability across blood brain barrier using nanoparticles in meningitis. Inflammopharmacology. 2018;26(3):675-84.

Nasir A, Kausar A, Younus A. A Review on Preparation, Properties and Applications of Polymeric Nanoparticle-Based Materials. Polymer-Plastics Technology and Engineering. 2015;54(4):325-41.

Niza E, Ocaña A, Castro-Osma JA, Bravo I, Alonso-Moreno C. Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment. Cancers (Basel). 2021;13(14).

Oliveira P, Fortuna A, Alves G, Falcao A. Drug-metabolizing Enzymes and Efflux Transporters in Nasal Epithelium: Influence on the Bioavailability of Intranasally Administered Drugs. Curr Drug Metab. 2016;17(7):628-47.

Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93-102.

Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3-14.

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71.

Pawar B, Vasdev N, Gupta T, Mhatre M, More A, Anup N, et al. Current Update on Transcellular Brain Drug Delivery. Pharmaceutics. 2022;14(12).

Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, et al. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano. 2015;9(7):6996-7008.

Perinelli DR, Cespi M, Bonacucina G, Palmieri GF. PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. Journal of Pharmaceutical Investigation. 2019;49(4):443-58.

Ramalho MJ, Sevin E, Gosselet F, Lima J, Coelho MAN, Loureiro JA, et al. Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm. 2018;545(1-2):84-92.

Ranjit K, Ahmed A. Nanoparticle: An overview of preparation, characterization and application. International Research Journal of Pharmacy. 2013;4.

Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science. 2011;36(7):887-913.

Rassu G, Soddu E, Posadino AM, Pintus G, Sarmento B, Giunchedi P, et al. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer's therapy. Colloids Surf B Biointerfaces. 2017;152:296-301.

Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64-70.

Rodriguez-Otormin F, Duro-Castano A, Conejos-Sánchez I, Vicent MJ. Envisioning the future of polymer therapeutics for brain disorders. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(1):e1532.

Saha P, Kathuria H, Pandey MM. Intranasal nanotherapeutics for brain targeting and clinical studies in Parkinson's disease. J Control Release. 2023;358:293-318.

Salvalaio M, Rigon L, Belletti D, D'Avanzo F, Pederzoli F, Ruozi B, et al. Targeted Polymeric Nanoparticles for Brain Delivery of High Molecular Weight Molecules in Lysosomal Storage Disorders. PLoS One. 2016;11(5):e0156452.

Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34-47.

Sastri KT, Gupta NV, M S, Chakraborty S, Kumar H, Chand P, et al. Nanocarrier facilitated drug delivery to the brain through intranasal route: A promising approach to transcend bio-obstacles and alleviate neurodegenerative conditions. Journal of Drug Delivery Science and Technology. 2022;75:103656.

Selvaraj K, Gowthamarajan K, Karri VVSR. Nose to brain transport pathways an overview: potential of nanostructured lipid carriers in nose to brain targeting. Artif Cells Nanomed Biotechnol. 2018;46(8):2088-95.

Sharma N, Bhandari S, Deshmukh R, Yadav AK, Mishra N. Development and characterization of embelin-loaded nanolipid carriers for brain targeting. Artif Cells Nanomed Biotechnol. 2017;45(3):409-13.

Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci Technol Adv Mater. 2019;20(1):324-36.

Shrestha N, Khan S, Neupane YR, Dang S, Md S, Fahmy UA, et al. Tailoring Midazolam-Loaded Chitosan Nanoparticulate Formulation for Enhanced Brain Delivery via Intranasal Route. Polymers (Basel). 2020;12(11).

Singh SK, Dadhania P, Vuddanda PR, Jain A, Velaga S, Singh S. Intranasal delivery of asenapine loaded nanostructured lipid carriers: formulation, characterization, pharmacokinetic and behavioural assessment. RSC Advances. 2016;6(3):2032-45.

Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278(1):1-23.

Sonar SA, Lal G. Blood-brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol. 2018;103(5):839-53.

Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Stanisçuaski Guterres S, et al. Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics. 2018;10(1).

Stewart SA, Domínguez-Robles J, Donnelly RF, Larrañeta E. Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications. Polymers (Basel). 2018;10(12).

Subhash Hinge N, Kathuria H, Monohar Pandey M. Rivastigmine-DHA ion-pair complex improved loading in hybrid nanoparticles for better amyloid inhibition and nose-to-brain targeting in Alzheimer's. Eur J Pharm Biopharm. 2023;190:131-49.

Suffredini G, East JE, Levy LM. New applications of nanotechnology for neuroimaging. AJNR Am J Neuroradiol. 2014;35(7):1246-53.

Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28-51.

VARAN, C; BILENSOY, E. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. Beilstein J Nanotechnol. 8, 1446-1456, 2017.

VAUTHIER, C; BOUCHEMAL, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 26(5), 1025-1058, 2009.

VILA, A; GILL, H; MCCALLION, O; ALONSO, MJ. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Control Release. 98(2), 231-244, 2004.

WEN, Z; YAN, Z; HU, K; PANG, Z; CHENG, X; GUO, L; ZHANG, Q; JIANG, X; FANG, L; LAI, R. Odorranalectinconjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson's disease following

intranasal administration. J Control Release 151(2), 131-138, 2011.

XIA, H; GAO, X; GU, G; LIU, Z; HU, Q; TU, Y SONG, Q; YAO, L; PANG, Z; JIANG, X; CHEN, J; CHEN H. Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery. Int J Pharm. 436(1-2), 840-850, 2012.

XIA, H; GAO, X; GU, G; LIU, Z; ZENG, N; HU, Q. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials 32(36), 9888-9898, 2011.

XU, Q; ENSIGN, LM; BOYLAN, NJ; SCHÖN, A; GONG, X; YANG, JC; LAMB, NW; CAI, S; YU, T; FREIRE, E; HANES, J. Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo. ACS Nano 9(9), 9217-9227, 2015.

YOKEL, RA. Direct nose to the brain nanomedicine delivery presents a formidable challenge. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 14(2), e1767, 2022.

ZIELIŃSKA, A; CARREIRÓ, F; OLIVEIRA, AM; NEVES, A; PIRES, B; VENKATESH, DN; DURAZZO, A; LUCARINI, M; EDER, P; SILVA, AM; SANTINI, A; SOUTO, EB. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020;25(16).

Downloads

Publicado

22-08-2024

Edição

Seção

REVISÕES DA LITERATURA